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Effects of different weights and lifting postures on balance control following 

repetitive lifting tasks in construction workers 

 

ABSTRACT  

Repetitive lifting tasks have detrimental effects upon balance control and may contribute towards 

fall injuries, yet despite this causal linkage, risk factors involved remain elusive. This study 

evaluates the effects of different weights and lifting postures on balance control using simulated 

repetitive lifting tasks. Twenty healthy male participants underwent balance control assessments 

before and immediately after a fatiguing repetitive lifting tasks using three different weights in a 

stoop ( 10 participants) or a squat ( 10 participants) lifting posture. Balance control assessments 

required participants to stand still on a force plate with or without a foam (which simulated an 

unstable surface) while center of pressure (CoP) displacement parameters on the force plate was 

measured. Results reveal that: i) increased weight (but not lifting posture) significantly increases 

CoP parameters; ii) stoop and squat lifting postures performed until subjective fatigue induce a 

similar increase in CoP parameters; and iii) fatigue  adversely effected the participant’s balance 

control on an unstable surface vis-a-vis a stable surface. Findings suggest that repetitive lifting of 

heavier weights would significantly jeopardize individuals’ balance control on unstable supporting 

surfaces, which may heighten the risk of falls. This research offers an entirely new and novel 

approach to measuring the impact that different lifting weights and postures may have upon worker 

stability and consequential fall incidents that may arise.    
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INTRODUCTION  

Fall injuries are a leading cause of fatal injuries and the second most common cause of non-fatal 

injuries in the construction industry (Center to Protect Workers’ Right, 2007). According to the 

United States Bureau of Labor Statistics (BLS), fall injuries in the construction industry accounted 

for 32% of all work-related deaths (BLS, 2006a) and 34% of non-fatal injuries (BLS, 2006b). Fall-

related injuries are also prevalent amongst the general public, especially among the elderly (Zigel 

et al., 2009; Jiang et al., 2011). Slips, trips and loss of balance are common contributing factors to 
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fall injuries on a level surface (Hsiao and Simeonov, 2001; Lipscomb et al., 2006). While slips 

and trips can be mitigated by ergonomic design of the working environment, balance control is 

inherently far more complex and relies upon the coordination of multiple sensory systems (visual, 

vestibular, and proprioception/somatosensory), the motor system and central nervous system 

(Punakallio, 2005; Horak, 2006). Impaired balance control (i.e., increased postural sway) has been 

linked to an increased risk of falls (Prieto et al., 1996; Corbeil et al., 2003; Paillard, 2012). 

Therefore, any potential interventions to minimize workplace falls and concomitant injuries 

sustained, must ensure that balance control is not impaired by personal, environmental and task-

related risk factors (Hsiao and Simeonov, 2001). 

 

Amongst the many task related hazards confronting construction workers, repetitive lifting tasks 

presents a prominent and significant risk (Marras et al., 1995; Sparto et al., 1997a; Latza et al., 

2002). Repetitive lifting tasks involving different weights and/or awkward lifting postures (e.g., 

stoop or squat) are common for tradesmen handling masonry, concrete reinforcement, scaffolding 

and paving (Goldsheyder et al., 2002; Hess et al., 2003; Albers and Estill, 2007). For example, 

rebar workers repetitively lift different weights of rebars (ranging from 7 to 17kg) during their 

typical working day. In turn, different weights have differential effects upon spinal biomechanics 

(e.g., causing muscle fatigue) and heavyweights can affect workers’ balance control (Hagen and 

Harms-Ringdahl, 1994; Straker and Duncan, 2000). The stoop lifting posture induces greater back 

extensor muscle activity and stronger perceived back muscle fatigue than squat lifting (Hagen and 

Harms-Ringdahl, 1994). However, postural perturbations during repetitive lifting (using either 

posture) overloads the musculoskeletal tissue and impairs balance control thus elevating the risk 

of loss of balance, fall incidents and consequential injuries (Chow et al., 2005). This is because 

postural perturbations during repetitive lifting tasks shift the body’s center of mass to move beyond 

the base of support to create excessive center of pressure (CoP) displacement (Kincl et al., 2002; 

Chow et al., 2005).  

 

Muscle fatigue is also attributed to impaired balance control and elevated risk of fall injuries 

(Yaggie and McGregor, 2002; Corbeil et al., 2003). Research into muscle fatigue is well 

documented and has thus far included assessing: a muscle’s peripheral characteristics such as 

reductions in maximal voluntary contraction and/or relaxation (Davidson et al., 2009; Paillard et 
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al., 2010b); a muscle’s output using characteristics of its surface electromyogram (sEMG) (Caron, 

2004; Paillard et al., 2007); aspects relating to dehydration and different postural stances (Lion et 

al., 2010; Bisson et al., 2010a); and its affect upon the sensory systems (Hiemstra et al., 2001; 

Forestier et al., 2002). Muscle fatigue’s impact upon the sensory system could be explained by the 

accumulation of metabolites leading to: altered muscle spindle function (Hiemstra et al., 2001); 

altered central processing of proprioception via group III and IV afferents (Forestier et al., 2002); 

and effects on the efferent sensory pathways (Taylor et al., 2000). However, research illustrates 

that the mechanisms involved in muscle fatigue are dependent upon the fatigue methods conducted 

to fatigue the muscles (task dependency) (Enoka and Duchateau, 2008).  

 

Consequently, the mechanisms involved in muscle fatigue induced by performing repetitive lifting 

tasks under conditions of postural perturbation are essential to any meaningful analysis conducted. 

Additionally, construction workers (e.g., masons, rebar workers) perform manual repetitive lifting 

tasks in which they are exposed to different weights and lifting postures for extended periods of 

time (Jaffar et al., 2011). Although previous studies have investigated the influence of repetitive 

lifting tasks on spinal movement or paraspinal muscle response, the direct effects of different 

weights and lifting postures following repetitive lifting task on balance control remained 

unexplored. Against this contextual setting, this study seeks to evaluate the effects of different 

weights and lifting postures on balance control following simulated repetitive lifting tasks. With 

regards to the stated aim, the objectives of the present study were: i) to compare the effects of 

stoop and squat lifting postures on balance control during quiet standing balance tests, and ii) to 

assess the effects of the magnitude of weights on balance control following fatiguing repetitive 

lifting tasks (i.e., by comparing standing balance tests performed on a stable and an unstable 

supporting surfaces. Two hypothesis are proposed, namely: i) that a stoop lifting posture would 

induce a significantly greater adverse effect upon an individuals’ balance control than a squat 

lifting posture following a fatiguing repetitive lifting task; and ii) that heavy lifting weight would 

jeopardize the balance control on both stable and unstable surfaces (although the adverse effect 

would be greater on an unstable surface).  

 

 

RESEARCH METHODS  
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An experimental laboratory controlled test procedure was adopted for this research. Twenty 

healthy participants (all males) were recruited from the student population of the Hong Kong 

Polytechnic University to participate in this study. The participants mean age was 27.9 ± 4.0 years, 

weight was 71.0 ± 8.97 kg, and height was 1.74 ± 0.09 m. There was no significant difference in 

age, height, and weight of participants in both groups. Test entry criteria for participants were: i) 

no history of upper limb, back or lower limb pain/injury; and ii) no history of neurological and/or 

vestibular disorders or other conditions that might affect balance control. Participants provided 

their informed consent as approved by the Human Subject Ethics Subcommittee of The Hong 

Kong Polytechnic University (reference number: HSEARS20160719002). Upon consent being 

given, participants provided their demographic data and were randomized into either a stoop lifting 

or a squat lifting group (10 participants each). Each participant’s maximum lifting strength (MLS) 

in a stoop or squat lifting posture was then assessed by a back-leg lift dynamometer (Chattecx 

Corporation, USA). Each group of participants was assigned an allotted lifting posture (i.e., stoop 

or squat lifting) and requested to gradually pull up the handle of the dynamometer until they 

reached their perceived MLS. Each participant performed the test twice with a two-min break in 

between; the highest value of the two trials recorded on the dynamometer represented the 

participant’s MLS (Piezotronics, New York Inc., USA).  As a result, the participants’ mean MLS 

for stoop and squat lifting postures was 95.4 ± 17.4 kg and 110.7 ± 13.86 kg, respectively.  

 

The participant then underwent  standing balance tests (pre- and post-fatiguing repetitive lifting 

tasks) that involved three conditions: i) eyes opened on a force plate (EOS); ii) eyes closed on a 

force plate (ECS); and iii) eyes closed on a foam placed on a force plate (ECF) (where the foam 

simulated an unstable surface) (refer to Figure 1). The three standing balance tests were chosen to 

reflect the variety of visual and support surface conditions encountered by construction workers 

during their course of workplace activities (Wade and Davis, 2008). Balance tests sought to 

evaluate shifts in the body’s center of pressure (CoP) under these conditions and required 

participants to stand upright in a relaxed position with their arms by their sides for 15 seconds (c.f. 

Doyle et al., 2005). Their feet had to remain in the same position marked on a piece of transparent 

sheet that covered the force plate (except ECF condition). The participant was instructed to look 

ahead during the EOS test, while vision was occluded by a non-transparent goggle (ANSI Z 136, 

USA) during ECS and ECF tests. To minimize external sound stimuli, participants wore hearing 
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protection during all tests conducted (CE EN 352, Australian standard). The force plate was 

positioned next to the lifting task experimental set up to minimize the time interval between the 

fatiguing lifting tasks and the CoP measurements. Previous studies have demonstrated that CoP 

displacements from a force plate provide objective, accurate and reliable balance control 

measurements (Prieto et al., 1996; Lafond et al., 2004). 

 

The CoP displacement test data was collected using a portable 8 channel multiplexing and 

amplitude modulation circuit force plate (KISTLER Instrumente. AG, Winterthur, Switzerland). 

The CoP data were sampled at 50Hz and low passed filtered with a second-order Butterworth filter 

(10Hz). MATLAB 7.9 software (Matlab, The MathWorks Inc., MA, USA) was used to analyze 

the CoP movements. The displacements of CoP were quantified from: the total sway area, the root 

mean square (RMS) of the anterior/posterior (A/P) and medial/lateral (M/L) displacements and 

mean velocity (MV) sway in the A/P and M/L displacement. These CoP parameters have been 

used in previous studies to evaluate the balance control of an individual; where large displacement 

of CoP values indicates poor balance control that may increase the risk of falls (Prieto et al., 1996; 

Bisson et al., 2010a).  

 

<Insert Figure 1 about here> 

 

In order to eliminate any possible biases and differences between and within the two lifting posture 

groups, each participant was randomly assigned to either a stoop or squat lifting postures, and then 

performed three separate sets of fatiguing repetitive lifting tasks at 5%, 10% and 15% of MLS. As 

such, the mean weights for 5% MLS, 10% MLS, and 15% MLS were (stoop lifting posture: 4.77 

± 0.87 kg, 9.54 ± 1.74 kg, and 14.31 ± 2.61 kg) and (squat lifting: 5.54 ± 0.69 kg, 11.07 ± 1.39 kg, 

and 16.61 ± 2.08 kg), respectively. These three percentages of MLS were chosen because previous 

pilot study research observed that rebar workers on construction sites usually lifted reinforcement 

bars within these boundaries. Specifically, the repetitive experimental task (using either stoop or 

squat lifting posture) involved each participant standing upon a demarcated area, with explicit 

instructions not to move their feet, and lifting a wooden box (of dimensions 30 x 30 x 25 cm) that 

contained the target weight (refer to Figure 2). Each participant had to lift the box from the floor 

to the waist level using the assigned lifting posture until subjective fatigue was reached despite 
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strong verbal encouragement (that is, a point in time at which the participant could not continue 

lifting further). Immediately after each lifting task, the standing balance tests were repeated. To 

standardize the lifting cycle, a metronome was used to guide the lifting at a rate of 10 cycles per 

minute. Participants received a 20-minute rest between each lifting task to prevent muscle fatigue.  

 

<Insert Figure 2 about here> 

 

Statistical Analysis  

Independent t-tests were conducted to compare between-group differences (stoop vs. squat) and 

each balance test for all CoP parameters. Once results of the Shapiro-Wilks test confirmed data 

normality (p > 0.05), a separate three-way (3×3×2) repeated measures analyses of variance 

(ANOVA) for weights (5% MLS vs. 10%MLS vs. 15% MLS), balance tests (EOS vs. ECS vs. 

ECF) and fatigue (pre- vs. post-fatigue) were conducted for each CoP parameter. Given 

statistically significant F ratios (refer to Table 1), post-hoc pairwise comparisons were conducted 

with Bonferroni adjustment. Partial eta squared ( 2

p ) values were reported to estimate the effect 

sizes. Statistical Package for the Social Science (SPSS) version 20.0 (IBM, USA) was used for the 

statistical analysis and statistical significance was set at p < 0.05. 

  

RESULTS  

Figure 3a-e summarizes the arithmetic mean and standard deviation (SD) for RMS of CoP A/P 

displacement, RMS of CoP M/L displacement, MV of CoP A/P displacement, MV of CoP M/L 

displacement and total sway area for each balance test condition immediately after the stoop and 

squat lifting tasks. All CoP parameters revealed no significant difference between lifting postures 

in the three balance test conditions (p > 0.05) although the absolute value of all CoP parameters 

following the repetitive squat lifting task were larger than those following a stoop lifting posture 

under all balance test conditions (refer to Figure 3a-e). 

 

<Insert Figure 3a-e about here> 

Balance Stability Parameters Comparison of Different Weights, Balance Tests, and Fatigue 

The ANOVA results for CoP parameters are presented in Table 1. Since the main effect of the 

lifting posture groups (stoop vs. squat) and all relevant interactions were not significant (p > 0.05) 
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(see Figure 3a-e), the following results only described the effects of different weights, balance test 

conditions and fatigue on CoP parameters based on pooled data from the two lifting postures.  

 

<Insert Table 1 about here> 

 

Total Sway Area 

Three-way repeated measures ANOVA revealed no significant interaction between weight by 

balance test by fatigue for total sway area (F = 0.66, p = 0.53, 2

p = 0.03) (refer to Table 1). The 

total sway area demonstrated a significant interaction between weight and fatigue (F = 127.27, p 

= 0.00, 2

p  = 0.87) but all other two-way interaction effects were not significant. Significant main 

effects for weight (F= 127.27, p = 0.00, 2

p = 0.87) and fatigue (F=112.98, p = 0.00, 2

p = 0.86) 

were found. The effect of weight significantly increased the total sway area immediately after 

lifting tasks. The total sway areas after lifting 5%, 10%, and 15% of MLS were 92.16%, 218.17%, 

and 412.97% larger than the respective pre-fatigue conditions (Figure 4). 

 

<Insert Figure 4 about here> 

 

Root Mean Square (RMS) of CoP Displacement 

At baseline, balance test conditions revealed no significant difference of RMS of CoP A/P or M/L 

displacement across all balance test conditions (EOS, ECS and ECF). However, significant two-

way and three-way interactions (i.e. weight and fatigue, and balance test condition) were observed 

on RMS of CoP A/P and M/L displacement (refer to Table 1 and Figure 5a-b). 

 

<Insert Figure 5a-b about here> 

 

Repetitive lifting at 5% MLS had no significant effect on RMS of CoP A/P displacement across 

all balance test conditions (p > 0.05). However, repetitive lifting at 10% MLS or 15% MLS 

significantly increased RMS of CoP A/P displacement as compared to the baseline. Interestingly, 

the effect of weight induced significantly larger RMS of CoP A/P displacement in the ECF 

condition when compared to the EOS and ECS conditions. Similarly, repetitive lifting at 15% MLS 
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caused significantly larger RMS of CoP A/P displacement under ECF condition than EOS and 

ECS conditions (refer to Figure 5a). For 15% MLS lifting, ECF caused an increase in RMS of CoP 

A/P displacement by 70.37% and 55.96% when compared to EOS and ECS, respectively. When 

compared to the baseline, repetitive lifting at 5% MLS, 10% MLS and 15% MLS increased RMS 

of CoP A/P displacement by 75.97%, 197.73%, and 325.65%, respectively. Taken together, 3-way 

interaction revealed that repetitive lifting at 10% and 15% MLS caused significantly greater RMS 

of CoP A/P displacement under ECF condition (at 10%MLS: 82.70% and 76.02%) and (at 

15%MLS: 77.74% and 59.88%) as compared to EOS and EOS respectively (Figure 5a).   

 

Similarly, significant 3-way interaction revealed that repetitive lifting at 10% MLS and 15% MLS 

significantly increased RMS of CoP M/L displacement at ECF condition (10% MLS: 82.09% and 

72.09%; 15% MLS: 66.25% and 56.52%) compared to EOS and ECS conditions, respectively (p 

< 0.05; Fig. 5b), while there was no significant difference of 5% MLS lifting weight on RMS of 

CoP M/L displacement across all balance test conditions. Moreover, the main effect results 

revealed that RMS of CoP M/L displacement under ECF condition was 70.09% and 60.08% 

greater than ECS and EOS after fatiguing repetitive lifting (p < 0.05) (Figure 5b). Furthermore, 

lifting weight (at 5% MLS, 10%, MLS, and 15% MLS) significant increased RMS of CoP M/L 

displacement by 69.39%, 183.16% and 307.14% after fatiguing. 

 

Mean Velocity (MV) 

The MV of CoP A/P and M/L displacement analyses revealed significant main effects of weight, 

balance and fatigue, and significant two-way and three-way interactions (refer to Table 1, Figure 

6a-b). Repetitive lifting at 5% MLS, 10% MLS,  and 15% MLS increased MV of CoP A/P 

displacement under the ECF condition by 207.79% and 153.74%; 180.86% and 144.91%; and 

163.26% and 135.23% when compared to EOS and ECS conditions respectively (refer to Figure 

6a). In addition, increased lifting weight significantly increased MV of CoP A/P displacement in 

all EOS and ECS pairwise comparisons (p < 0.05). Fatigue significantly increased MV of CoP A/P 

displacement in all balance tests (p < 0.05). Repetitive lifting at 5% MLS, 10% MLS and 15% 

MLS increased MV of CoP A/P displacement by 27.66%, 59.04%, and 88.53% respectively. The 

3-way interaction test revealed that heavier fatiguing repetitive lifting task had significantly greater 

effect on MV of CoP A/P displacement under ECF condition when compared to EOS or ECS 
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conditions (p < 0.05). Specifically, repetitive lifting at different weights (at 5% MLS: 190.98% 

and 146.56%; at 10% MLS: 154.40% and 133.87%; at 15% MLS: 134.73% and 121.31%) had 

differential increases in MV of CoP A/P displacement under the ECF condition when compared 

to EOS or ECS conditions.  

 

Similarly, greater MV of CoP M/L displacements (at 5% MLS: 252.62% and 229.88%; at 10% 

MLS: 228.13% and 207.74%; at 15% MLS: 214.02% and 194.66%) at the ECF condition were 

noted as compared to both the EOS and ECS conditions (Figure 6b). However, no significant 

difference of MV of CoP M/L displacement was observed for all EOS and ECS pairwise 

comparisons (p > 0.05). Fatigue significantly increased MV of CoP M/L displacement in all 

balance test conditions (p < 0.05). Moreover, lifting at 5%, 10%, and 15% MLS significantly 

increased MV of CoP M/L displacement by 27.74%, 63.76% and 99.06%, respectively. The 3-

way interaction revealed that although post-fatigue MV of CoP M/L displacement under the ECF 

condition was consistently higher than either the EOS or ECS conditions, heavier repetitive lifting 

weights (5% MLS: 186.87% and 182.10%; at 10% MLS: 168.45% and 161.63%; at 15% MLS: 

160.82% and 152.57%) caused differential increases in MV of CoP M/L displacement under ECF 

condition when compared to the EOS and ECS conditions.  

<Insert Figure 6a-b about here> 

DISCUSSION  

Analysis results revealed no significant difference between lifting postures after the fatiguing 

lifting task across all balance test conditions. This finding indicates that fatiguing repetitive stoop 

and squat lifting postures induce a similar balance control deficit. Consequently, this finding 

refutes our first hypothesis that the stoop lifting posture would induce greater variations in balance 

control than squat lifting postures following fatiguing repetitive tasks. In addition, while increased 

repetitive lifting weight significantly produced a larger increase in CoP parameters (both RMS and 

MV of CoP A/P and M/L displacement analyses), under ECF condition (when compared to either 

EOS or ECS condition), increased lifting weight caused no significant difference in CoP 

parameters (total sway area, RMS of CoP A/P and M/L displacement and MV of CoP M/L 

displacement) between EOS and ECS conditions. These findings confirm our second hypothesis 

that the fatiguing repetitive lifting tasks cause poorer balance control on an unstable surface when 

compared to the stable surface (Yaggie and McGregor, 2002; Corbeil et al., 2003). 
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Comparison of Repetitive Lifting Postures: Stoop and Squat 

Test results demonstrate that fatiguing repetitive stoop and squat lifting postures induced similar 

impairments in balance control, which is contrary to findings reported upon in previous studies 

(c.f. Sparto et al., 1997a; Commissaris and Toussaint, 1997; Chow et al., 2005). Chow et al. (ibid) 

reported a significant difference in CoP parameters during a test that involved lifting four different 

weights (20, 40, 60, 80N) at a rate of five lifting cycles per minute using two different lifting 

postures (symmetric stoop and squat lifting) after a sudden release of weight. Although the lifting 

postures were similar to the present study, the discrepancy in results may be attributed to 

differences in lifting weights, lifting speed, and the absence of a sudden release of weight. Sparto 

et al., (1997a) found a significant effect of lifting postures upon balance control by instructing 

their participants to lift at their maximal lifting rate until they: i) cannot continue; and ii) attained 

an aerobic limit (heart rate of 180 beats/minute). Several methodological differences exist in the 

literature regarding the contradictory effects of lifting postures on balance control as comparted to 

previous studies. First, the current study performed the stoop or squat lifting posture from ground 

floor to the waist level of each participant, which was contrary to Commissaries and Toussaint 

(1997) study, where participants underwent the same lifting postures at acromion height. Second, 

there was no vertical distance between the load and the ground in the present study, however, these 

authors standardized the lowest position at 14% of the participant’s body height.  . Consequently, 

these results cannot be directly compared to the present study due to differences between research 

protocols adopted. However, our experimental protocol reflects the vertical height of static 

repetitive lifting posture since we conducted a pilot site observational study of construction 

workers (e.g., rebar workers) lifting postures in Hong Kong. 

Effects of Different Weights, Balance Tests, and Fatigue on Balance Control  

Research results presented indicated that increased weight significantly increased postural sway 

(i.e., poorer balance control) following a fatiguing repetitive lifting task. This suggests that 

repetitive lifting with relatively heavy weights may indirectly increase the risk of fall injuries 

(Corbeil et al., 2003; Paillard, 2012). Findings presented concur with previous research that 

evaluated the impact of adding weights until fatigue and its impact upon balance control (Ledin 

and Odkvist, 1993; Punakallio et al., 2003; Lee et al., 2008). Punakallio et al. (2003) reported 

significant increase in CoP parameters in the A/P and M/L directions after wearing firefighting 
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clothing weighing 25.9 kg for 40 seconds in an upright standing position. Similarly, Ledin and 

Odkvist (1993) found that putting weight (totaling 20% of body mass) on the chest and back of 

participants’ impaired their ability to remain in equilibrium during 45 seconds. Unfortunately, 

these studies did not compare the effects of different weights on CoP parameters; whereas the 

present study reveals increases in CoP parameters as lifting weight is increased from 5% to 15% 

of the participant’s MLS. Overall, the findings of the current study can be used to improve the 

balance control with subsequent fall injuries of construction workers involved in repetitive lifting 

tasks of weight in range between 5 to 17 kg. 

 

 

The current study revealed that lifting weights have a differential effect upon balance controls. 

Repetitive lifting had similar effect on balance control in A/P and M/L direction on a stable support 

surface regardless of the presence/absence of vision. In the current study, the visual system is 

thought not to be a contributing factor to impair balance control for two reasons: firstly, during the 

eyes open standing balance test (i.e., EOS), the participants focused on a standard white sheet at a 

uniformed distance, and secondly the participants eyes were closed during the eyes closed standing 

balance test condition (i.e., ECS). Previous studies have suggested that visual target placed at 

informed distance can impair balance control (Vuillerme et al., 2001; Vuillerme et al., 2006). 

Vuillerme et al. (2001) showed that a visual target placed at 1 m can attenuate the effect of fatigue 

on balance control during quiet standing balance task. Conversely, the impact of lifting weight on 

balance control was more profound on an unstable supporting surface with vision occlusion (i.e., 

ECF) than the other two standing balance conditions. Since an individual relies more on 

proprioceptive inputs from lower limb and trunk to maintain balance on an unstable surface during 

vision occlusion (Derave et al., 2002; Maurer et al., 2006; Horak and Macpherson 1996; 

Bhattacharya et al., 2003), the presence of fatigue may affect an individual’s ability to provide 

correct proprioceptive signals to the brain for balance control (Simeonov et al., 2003). Therefore, 

repetitive lifting of heavy weights may heighten the risk of fall injuries (Corbeil et al., 2003; 

Paillard, 2012). Hence, the lifting weight should be reduced for repetitive lifting tasks in order to 

minimize the risk of falls among workers working on an unstable supporting surface. Since 

reducing the lifting weight may sometimes be practically infeasible, construction workers should 
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adopt proper ergonomic interventions (e.g. exoskeletons, back belts and lifting equipment) to 

enhance the mechanical advantages of workers during lifting tasks (Kraus et al., 1996).  

 

The effect of muscle fatigue upon balance control was consistent with several previous studies 

using different fatigue protocols (c.f. Vuillerme et al., 2001; Yaggie and McGregor, 2002; Corbeil 

et al., 2003). These findings support the notion that repetitive lifting induces muscle fatigue, which 

may cause proprioceptive deficiency and suboptimal efferent muscle responses that compromise 

balance control (Hiemstra et al., 2001; Forestier et al., 2002). Although the evidence of muscle 

fatigue in the current experimental protocol was subjective, our previous studies measured muscle 

fatigue by using normalized median frequency (MF) and root mean square (RMS) of normalized 

sEMG amplitude based on similar protocols (Antwi-Afari et al., under review). Although these 

objective assessment of muscle fatigue are outside the scope of the current study, the results shown 

decreased MF values and increased muscle activity at the lumber erector spinae and quadriceps 

muscles, which also concur with previous studies during repetitive lifting tasks (Sparto et al., 1999; 

Davis et al., 2010). The interaction effects of weight and fatigue after repetitive lifting task were 

significant for all CoP parameters. This finding indicates impaired balance control with increased 

weight after fatigue is in line with previous studies (c.f. Punakallio et al., 2003; Schiffman et al., 

2006; Lee et al., 2008). The current study assessed balance control by using CoP parameters 

measured from a force plate. With regards to the directional-specific effects of muscle fatigue, the 

research findings indicated that balance control in the A/P and M/L directions showed a similar 

increase in perceived lower back and calf/quadriceps muscles fatigue following stoop and squat 

lifting postures, respectively. These results are in accordance with findings of Gribble and Hertel 

(2004a) and Soleimanifar et al., (2012) which observed that balance control in sagittal and frontal 

planes was impaired after the fatigue of either hip, knee or ankle muscles. Overall, these findings 

suggest that the effects of fatigue on balance control are specific to the fatigue location and 

measures of balance control used.  

 

However, akin to other proprioception studies that examined repetitive lifting tasks (Sparto et al., 

1997a; Lin et al., 2012) the current study has some limitations. First, the sample size was relatively 

small albeit, significant and second, the study was conducted on student participants in a laboratory 

setting. Future work should therefore evaluate the impact of different lifting parameters on a larger 
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sample size experienced construction workers working on on-site. Third, the study results may not 

be general with respect to repetitive lifting tasks in construction workers. Although designed to 

evaluate risk factors in relatively realistic conditions, the current study involved only a static 

controlled repetitive lifting/lowering task. Also, balance control was evaluated during quiet 

standing tests, while the majority of fall injuries may occur during dynamic tasks that are initiated 

by slip, trip and loss of balance events. Earlier research has suggested that balance control system 

utilizes the same control mechanisms under quiet standing and dynamic test conditions (Lauk et 

al., 1998). However, future research is warranted to evaluate balance control during real dynamic 

repetitive lifting tasks, and to investigate how they can be translated to fall prevention in real 

construction sites. Fourth, it remains unknown how a change in specific lifting posture (i.e., either 

stoop or squat) may affect balance control. How balance may be associated with increased risk of 

falls among construction workers remains to be seen given that we did not find a significant change 

in lifting postures across standing balance tests. Future research is needed to examine other index 

of fatigue in lifting postures such as reduction maximal voluntary contraction and/or relaxation 

(Davidson et al., 2009; Paillard et al., 2010b), aspects relating to dehydration (Lion et al., 2010) 

and physiological effects (Nardone et al., 1997; Mello et al., 2010a).  

  

CONCLUSIONS  

This is the first study to evaluate the effects of different lifting weights and lifting postures on 

balance control following simulated fatiguing repetitive lifting tasks. The results revealed that: i) 

increased weight regardless of lifting postures significantly increased CoP parameters; ii) stoop 

and squat lifting postures performed until subjective fatigue induce a similar increase in CoP 

parameters; and iii) fatigue adversely effected the participant’s balance control on an unstable 

surface than on a stable surface. These results suggest that fatiguing repetitive lifting tasks may 

alter the proprioception of the lower limb/back that leads to increased postural sway and 

suboptimal balance control on an unstable supporting surface. Consequently, fatigued-related loss 

of balance control may limit the safety range of movement of the body’s center of gravity, and 

thus increase the risk of fall injuries. The findings of the present study have research and practical 

implications. First, the magnitude of weight during repetitive lifting task can significantly impair 

balance control and as such reduce the risk of loss of balance events with subsequent fall injuries. 

Second, surface support conditions are dependent on balance control; as such unstable supporting 
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surfaces can significantly reduce the effort for balance control and therefore could be useful in 

preventing fall injuries among construction workers. To reduce the possibility of losing balance, 

unstable supporting structures (e.g., scaffold, ramp) used as working surfaces should be minimized 

when performing static repetitive lifting tasks. Third, the findings demonstrate the potential of the 

suggested objective balance stability parameters in measuring static repetitive lifting task 

associated with fall risk resulted from extrinsic (e.g., weights of lift) and intrinsic (e.g., fatigue) 

factors. Construction workers can benefit from receiving adequate training in recognizing the role 

of lifting weights and fatigue during static repetitive lifting tasks, which would result in enhanced 

balance control through redesign of work and improved workers’ behaviour. Overall, these 

findings provide preliminary and invaluable information to researchers and practitioners seeking 

to develop practical interventions to reduce the risk of falls in construction workers (e.g., masons, 

rebar workers) involved in repetitive lifting tasks. Future studies should investigate the optimal 

working and rest durations among workers involving in repetitive lifting works in order to reduce 

the risk of fatigue-related balance deficit. 
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Figure 1 - A Foam (39 cm × 39 cm × 10 cm thickness) on a Force Plate 
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Figure 2 – Two lifting postures: (a) Stoop posture; and (b) Squat posture 
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Figure 3a-e - The Different Center of Pressure 

(CoP) Parameters during Balance Test 

Following Fatiguing Repetitive Lifting Tasks 

with Different Weights and Lifting Postures.  

Figure 3(a) - RMS of Anterior/Posterior 

Displacement of CoP 

 
 

 

 

 

 

Figure 3(b) -  RMS of Medial/Lateral 

Displacement of CoP  

Figure 3(c) - MV of Anterior/Posterior 

Displacement of CoP 

 

 

Figure 3(d) - MV of Medial/Lateral 

Displacement of CoP    

 
Figure 3(e) - Total Sway Area 
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Table 1 - Analysis of Variance Results for Center of Pressure (CoP) Parameters: F Ratios and P-

values 

Effects 
Sway area  A/P RMS  M/L RMS  A/P MV  M/L MV 

F ratio  F ratio  F ratio  F ratio  F ratio 

Main effect          

Weight 127.27*  137.40*  92.21*  105.69*  149.58* 

Fatigue 112.98*  346.17*  114.85*  174.41*  179.91* 

Postural task 2.17  7.56*  6.07*  61.11*  51.37* 

          

Interaction          

Weight × 

balance test  

0.66  10.81*  3.09*  6.22*  12.15* 

Fatigue × 

balance test  

0.17  16.49*  11.16*  15.39*  31.76* 

Weight × 

fatigue  

127.27*  137.40*  92.21*  105.69*  149.58* 

Weight × 

balance test × 

fatigue  

0.66  10.81*  3.09*  6.22*  12.15* 

Note: A/P RMS = Root mean square of anterior/posterior CoP displacement; M/L RMS = Root 

mean square of medial/lateral CoP displacement; A/P MV = Mean velocity of CoP in 

anterior/posterior directions; M/L MV = Mean velocity of CoP in medial/lateral directions. 

*Indicates statistically significant effects with p < 0.05. 
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Figure 4 - Total Sway Area (Mean and Standard Deviation) of the Different Postural Tasks Before 

(Baseline) and After Fatiguing Repetitive Lifting Task.  

 

NB: No significant difference was found in all conditions. 
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Figure 5a - RMS of anterior/posterior (A/P) 

CoP displacement 

 

 

Figure 5b - RMS of medial/lateral (M/L) CoP 

displacement

 
 

NB: *p significant at <0.05, **p significant at <0.01. 
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Figure 6a - MV of Anterior/Posterior (A/P) 

CoP Displacement 

  

Figure 6b - MV of medial/lateral (M/L) CoP 

displacement 

 

 

NB: *p significant at <0.05, ***p significant at <0.001. 
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